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Abstract—This paper presents an image reconstruction approach 
based on the time-domain and particle swarm optimization 
(PSO) for a 2-D homogeneous dielectric cylinder buried in a 
half-space. The computational method combines the finite 
difference time domain (FDTD) method and the particle swarm 
optimization (PSO) to determine the shape and location of the 
underground scatterer with arbitrary cross section. The 
subgirdding technique is implemented in the FDTD code for 
modeling the shape of the cylinder more closely. In order to 
describe an unknown cylinder with arbitrary shape more 
effectively, the shape function is expanded by closed cubic-spline 
function instead of frequently used trigonometric series. The 
inverse problem is resolved by an optimization approach, and the 
global searching scheme PSO is then employed to searching the 
parameter space. In order to reduce the number of the unknown 
parameters for the inverse scattering, the shape function of the 
cylinder is interpolated in terms of the closed cubic-spline. 
Numerical results demonstrate that, even when the initial guess is 
far away from the exact one, good reconstruction can be 
obtained. 

I. INTRODUCTION 
The objective of the inverse scattering is to determine the 

electromagnetic properties of the scatterer from scattering 
field measured outside. Inverse scattering problems have 
attracted much attention in the past few years. This kind of 
problem has several important applications such as medical 
imaging, microwave remote sensing, geophysical exploration, 
and nondestructive testing. Traditional iterative inverse 
algorithms are founded on a functional minimization via some 
gradient-type scheme [1]. In general, during the search of the 
global minimum, they tend to get trapped in local minima 
when the initial guess is far from the exact one. Some global 
optimal searching method such as genetic algorithm [2], 
neural network [3], have be proposed to search the global 
extreme of the nonlinear functional problem. In the 1995, the J. 
Kennnedy and R. Eberhart first proposed the particle swarm 
optimization (PSO) [4]. The particle swarm optimization is a 
population based stochastic optimization algorithm. It is a 
kind of swarm intelligence that is based on social behavior. 
This paper presents a computational scheme combining the 
FDTD and PSO to reconstruct the microwave imaging of a 2D 
homogeneous dielectric cylinder with arbitrary shape in free 
space. The forward problem is solved based on the FDTD 

method, for which the subgridding technique is implemented 
to closely describe the fine structure of the cylinder [5]. The 
inverse problem is formulated into an optimization one and 
then the global searching scheme PSO is used to searching the 
parameter space. Interpolation technique through the cubic 
spline is employed to reduce the number of parameters needed 
to closely describe a cylinder of arbitrary shape as compared 
to the Fourier series expansion 

II. SUBGRID FDTD 
Consider a 2-D homogeneous dielectric cylinder buried in a 

half-space as shown in Figure 1. The cylinder is assumed 
infinite long in z direction, while the cross-section shape is 
arbitrary in this study. The object is illuminated by line source 
with Gaussian pulse located at these points denoted by Tx 
around the scatterer. The incident waves of TMz polarization 
are generated by a home made FDTD code with fine grid to 
mimic the experimental data, and only reflected waves are 
recorded at those points denoted by Rx. In order to closely 
describe the shape of the cylinder for the forward scattering 
procedure the subgridding technique is implemented in the 
FDTD code. 

The FDTD method solves an EM problem using the 
Maxwell’s curl equations directly in time domain, which can 
be discretized to yield the following update equations of the E 
field for TMz case 
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 is defined by using the Yee-cell 

geometry as shown in Figure 2. The expressions of the H field 
1+n

xH and 1+n
yH  are not given here for brevity. The boundary of 
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Fig. 1 Geometrical configuration for the inverse scattering 

 

 
Fig. 2 The structure of the TMz FDTD major grids and local grids for 
the scaling ratio (1:3) : H fields are aligned with the MG-LG 
boundary 

 
the test domain is surrounded by the optimized perfect 
matching layer in this study. 

A subgridding scheme is employed to divide the 
problem space into regions with different grid sizes. The grid 

size in coarse region is about )
10
1

~
20
1

( maxλ  as in normal 

FDTD, while in the fine region the grid size is scaled by an 
integer ratio. As an example, the Yee cells with subgridding 
structure are shown in Figure 2, of which the scaling ratio is 
1/3. For the time domain scattering and/or inverse scattering 
problem, the scatterers can be assigned with the fine region 
such that the fine structure can be easily described. This can 
also avoid gridding the whole problem space using the finest 
resolution such that the computational resources are utilized in 
a more efficient way, which is quite important for the 
computational intensive inverse scattering problems. 

In Figure 2, E and H stand for the fields on the major grids, 
while e  and h  denote those on the local grids. If the scaling 
ratio is set at 1:3, 1:5 and 1:7, etc, then the E and H fields 
coincide with e  and h  fields in the fine region and in the 
time domain as shown in Figure 2. Since the local grid size is 
one third of the main grid size, the time stepping interval t′∆  

for the e  and h  fields on the local grids is also one third of 
that for the E and H fields on the main grids. 

III. INVERSE PROBLEM AND NUMERICAL RESULTS 
As shown in Figure 1, the problem space consists of 

three material layers divided into 6868×  grids with the grid 
size yx ∆=∆ =1.47 cm. The homogeneous dielectric cylinder 

buried in lossless half space ( 021 ==σσ ).The transmitters 
and receivers are placed in free space above the homogeneous 
dielectric. The permittivities in region 1 and region 2 are 
characterized by 01 εε =  and 02 3.2 εε = , respectively, while 

the permeability 0µ  is used for each region, i.e., only non-

magnetic media are concerned here. The cylindrical object is 
illuminated by a transmitter at two different positions, Ni=2, 
which are located at the (-35.28cm, 14.7cm) and (35.28cm, 
14.7cm), respectively. The scattered E fields for each 
illumination are collected at the eight receivers, M=11, which 
are equally separated by 8.8cm along the distance of 7.35cm 
from the origin. The excitation waveform Iz(t) of the 
transmitter is the Gaussian pulse, given by: 
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The inverse problem is resolved by an optimization 
approach, for which the global searching scheme PSO is 
employed to minimize the following cost function: 
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where exp
zE  and cal

zE  are experimental electric fields and 
the calculated electric fields, respectively. The Ni and M are 
the total number of the transmitters and receivers, respectively. 
T is the time duration of the recorded electric fields 
(T=250 t∆  is set in this study). 

The PSO is initialized with a population of random 
solutions which assigns a randomized velocity to each 
potential solution, called the particle. Thus, each particle has a 
position and velocity vector, and moves through the problem 
space. In each generation, the particle changes its velocity by 
its best experience, called pbest, and that of the best particle in 
the swarm, called gbest. Assume there are Np particles in the 
swarm that is in a search space in D dimensions, the position 
and velocity could be determine according to the following 
equations: 
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where k
idv  and k

idx  are the velocity and position of the i-th 
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Fig. 3 Flowchart of the particle swarm optimization 

 

particle in the d-th dimension at k-th generation, 1ϕ  and 2ϕ  

are both the random number between 0 and 1, 1c  and 2c  are 
learning coefficients and w  is the inertial weighting factor 
that can avoid the particle trapped into the local minimized 
solution. After generations, the PSO can find the best solution 
according to the best solution experience. 

Note that in order to accurately describe the shape of the 
cylinder, the subgridding FDTD technique is used both in the 
forward scattering (1:9) and the inverse scattering (1:5) parts – 
but with different scaling ratios as indicated in the parentheses. 
For the forward scattering, the E fields generated by the 
FDTD with fine subgrids are used to mimic the experimental 
data in (3). For the inverse scattering problem, a 
computational technique combining with the PSO and cubic 
spline interpolation is reported in this paper. In order to reduce 
the unknowns required to describe the arbitrary cylinder, the 
shape function of the cylinder is expressed in terms of a 
closed cubic spline. As shown in Figure 3, the cubic spline 
consists of the polynomials of degree 3 )(θiP  , Ni ,,2,1 L= , 
which satisfy the following smooth conditions:  

iiiii PP ρθθ == + )()( 1
 

)()( 1 iiii PP θθ +′=′         Ni ,,2,1 L= (6) 
    )()( iiii PP θθ ′′=′′

and  )()( 01 NNPP θθ =  

   
NNNPP ρθθ ′=′=′ )()( 01

                                               (7) 

)()( NNiN PP θθ ′′=′′
Through the interpolation of the cubic spline, an arbitrary 
smooth cylinder can be easily described through a few 
parameters Nρρρ ,,, 21 L  and the slope Nρ ′ . By combining 

the PSO and the cubic spline interpolation technique, we are 
able to reconstruction the microwave image efficiently. 

Next, we report two numerical results of using the scheme  
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Fig. 4  A cylinder of arbitrary shape is described in terms of the cubic spline. 
 
described above. There are twelve unknown parameters to 
retrieve, which include the center position )Y,(X 00 , the 

8,,2,1, L=iiρ  of the shape function and the slope Nρ′  plus 

the relative permittivity of the object, 03 / εεε =r .  Very 

wide searching ranges are used for the PSO to optimize the 
fitness given by (8). The parameters and the corresponding 
searching ranges are listed follow: cm7.14X14.7cm- ≤≤ O , 

cm7.41Y29.4cm- ≤≤ O , cm2.310cm ≤≤ iρ , 8,,2,1 L=i , 

11 ≤′≤− Nρ  and 161 ≤≤ rε . The relative coefficient of the 

PSO are set as below: The learning coefficients, 1c  and 2c , 
are both set to 2. The inertial weighting factor is set to 0.4 and 
the population size set to 120.  

The definition of r.m.s. error (DF) of the reconstructed 
shape )(θcalF  and the relative error (DIPE) of cal

rε  with 
respect to the exact values 
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rr
cal
rDIPE εεε /−=                              (9) 

where the 'N  is set to 160. 
The first example, a simple homogeneous dielectric 

cylinder is tested, of which the shape function )(θF  is 
chosen to be )3cos(94.2)cos(94.288.5)( θθθ ++=F cm, 

and the relative permittivity of the object is 2.3=rε . The 
reconstructed shape function of the best population member 
(particle) is plotted in Figure 5 for different generation. The 
r.m.s. error DF is about 2.4% and DIPE= 2% in final. It is 
seen that the reconstruction is good.  

The reconstructed result of the final example is shown in 
Fig. 7, where the shape is )3sin(47.188.5)( θθ −=F cm, 

and the relative permittivity of the object is 6.3=rε . The 
r.m.s. error DF is about 6.8% and DIPE=2.3%. Figure 8 
shows that the relative errors of the shape and the permittivity  
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Fig. 4 The reconstructed shape of the cylinder at different generations for 

example 1. 
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Fig. 5 Shape-function error and permittivity error at each generation of 
example 1. 
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Fig. 6  The reconstructed shape of the cylinder at different generations for the 
final example. 
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Fig. 8 Shape-function error and permittivity error at each generation of 
example 1. 

 
decrease quickly by generations. 

IV. CONCLUSIONS 
In this paper, we present a study of the time domain inverse 

scattering of an arbitrary cross section dielectric cylinder in 
free space. By combining the FDTD method and the PSO, 
good reconstructed results are obtained by using Gaussian 
pulse illuminations. The subgridding scheme is employed to 
closely describe the shape of the cylinder for the FDTD 
method. The inverse problem is reformulated into an 
optimization one, and then the global searching scheme PSO 
is employed to search the parameter space. Interpolation 
technique through cubic spline is utilized to reduce the 
number of parameters needed to describe an arbitrary shape. 
By using the PSO, the shape, location and dielectric constant 
of the object can be successfully reconstructed even when the 
dielectric constant is fairly large. 
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